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Noncommutative multidimensional linear dissipative systems
Consider a linear system evolving over Fy; the free semigroup of words

o =i, - - iy generated by d letters {i1, ..., iy} with neutral element 0:
x(ixk-a) = Awx(a)+ Bru(a), k=1,...,d,
(a € Fq)
y(a) = Cx(a)+ Du(a),
with contractive system matrix
Al B

o s [ Lu =15
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Noncommutative multidimensional linear dissipative systems
Consider a linear system evolving over Fy; the free semigroup of words

o =i, - - iy generated by d letters {i1, ..., iy} with neutral element 0:
x(ixk-a) = Awx(a)+ Bru(a), k=1,...,d,
(a (S fd)
y@ = Cx(a)+ Du(a),

with contractive system matrix

Al B

AN

As By u y

cC D

When x(B) = 0 and u = (u(@))acr, is in £(Fq), then y = (y(a))acr, is in
3,(F4) and the input-output map in the frequency domain is given by

9(2) = Te(2)a(z

where the transfer function Tx(z) and the Z-transforms 0(z) and §(z) are

given by formal power series in noncommuting indeterminates z = (z1,. .., z4):

Te(z) = D+ C(I = X4, 2cA) (L, zB1),
0(2) = Yoer, 2°0(a), 9(2) =S ,er, 2°¥(a),

where z% =z, - - -z, in case a = ik, - - -l -



Commutative multidimensional linear dissipative systems
Consider a linear system evolving over Z4.:

{ x(n) = 9 Awx(n — e) + Bru(n — ex),
y(n) = Cx(n)+ Du(n),

where e; = (1,0,...,0),...,e4 = (0,...,0,1) and we set x(n) = 0 and
u(n) =0 for n € Z¢ — Z4, with contractive system matrix

A B

o s L l-15]

c D

(n=(m,...,nqs) eZ%)



Commutative multidimensional linear dissipative systems
Consider a linear system evolving over Z4.:

{ x(n) = 9 Awx(n — e) + Bru(n — ex),
y(n) = Cx(n)+ Du(n),

where e; = (1,0,...,0),...,e4 = (0,...,0,1) and we set x(n) = 0 and
u(n) =0 for n € Z¢ — 74, with contractive system matrix

(n=(m,...,nqs) eZ%)

A B
AR
As By u y
cC D

When x(n) =0 for n = (0,...,0) and u = (w(n)u(n)), czd isin ,(24), then
y= (W(")Y("))nezi is in Zy(Z+), where (W(n))neZdJr is some weighting
sequence, and:

- M) = Te (A, M) 8O, . Aa) (M + -+ [Aaf® < 1)
where the transfer function Ty and the Z-transforms @i and y are given by
Ts(My-o s ha) = D+ C(1 = S0 MA)HEL, AiBY)
B Aa) = Xy gz AT A u(m, -, na) (M4 -+ a)? < 1).
(A1, ) = Z(mw,nd)eZi A Ay (m, ..., ng)



W*-correspondences

C*-correspondences

Given C*-algebras A and B, a linear space E is an (A, B)-correspondence when
E is a bi-module with a left A-action and right B-action, with a B-valued inner
product satisfying the following axioms: For £, {,n € E, \,u € C,ac A, be B

A+ uC,me = AEme + 1l me;
€-bme=Emeb;  (a-&me=(6a" -n)e;
(Eme=m8¢:

(&8 >0, (£,&g =0 implies that £ = 0;

and such that E is a Banach space with respect to the norm

1
l€lle == || (€, &) e || for & € E, where || ||5 denotes the norm of B.
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E is a bi-module with a left A-action and right B-action, with a B-valued inner
product satisfying the following axioms: For £, {,n € E, \,u € C,ac A, be B

A+ uC,me = AEme + 1l me;
€-bme=Emeb;  (a-&me=(6a" -n)e;
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and such that E is a Banach space with respect to the norm

1
l€lle == || (€, &) e || for & € E, where || ||5 denotes the norm of B.

Notation and terminology
Given two (A, B)-correspondences E; and E;:

e [L?(Ey, E;) denotes the set of bounded linear adjointable operators
T: E1 — E2 (|e <T§1,52>E2 = <§1, T*§2>E1 for some T S E(Ez, El))

e An operator T € L%(Ei, E) is called an A-module map if

T(ag) = a(T¢) (£ € Er,ac A).
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C*-correspondences

Given C*-algebras A and B, a linear space E is an (A, B)-correspondence when
E is a bi-module with a left A-action and right B-action, with a B-valued inner
product satisfying the following axioms: For £, {,n € E, \,u € C,ac A, be B

A+ uC,me = AEme + 1l me;
€-bme=Emeb;  (a-&me=(6a" -n)e;
(Eme=m8¢:

(&8 >0, (£,&g =0 implies that £ = 0;

and such that E is a Banach space with respect to the norm

1
l€lle == || (€, &) e || for & € E, where || ||5 denotes the norm of B.

W *-correspondences
An (A, B)-correspondence E is a W*-(A, B)-correspondence if in addition

e A and B are von Neumann algebras;

e T € L7(E,B) = there exists a {1 € E so that T = (§,{r) forall £ € E.



Examples of W*-correspondences

1. Any Hilbert space is a W*-(C, C)-correspondence.

2. AB = E = L(U), for some Hilbert space U, is a
(L(U), L(U))-correspondence with inner product (a, b) = b*a. The
generating bounded linear operator on L(U):

K +— T1KT, for given T1, T> € L(U)

> is adjointable <= T, = A\ly; for some A € D;
> is a L(U)-module map <= T; = Ay for some X € D.
3. Main example: A =B = £(U) and E = L(U,U?), operator columns of
length d, subject to

Tl A1 T1A2 T]_ 51 d
Ar- Ay = ; < ol > = S¢ Tk
Ty A1 TaA2 Ty Sd k=1

4. Other examples:
> systems evolving over quiver algebras;

> timevarying systems (Alpay-Ball-Peretz '02);

> analytic crossed-product algebras.



Constructing new correspondences

Direct sum correspondences
Similar to the Hilbert space case: Given two (A, B)-correspondences E and F,
we can form a direct-sum (A, B)-correspondence E @ F.

Tensor product correspondences
Given an (A, B)-correspondence E and a (B, C)-correspondence F, we form

E®F =span{{®~v: { € E,y € F}

where we identify
(€ -b)@v=¢@(b7)
Then E ® F is a (tensor product) (A, C)-correspondence subject to
a-((®7)=(-8®y ((®7) c=£a(y-0),
<£ ®7, 51 & 7/>E®F = <<’£>£/>E Y ’Y,>F .
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Direct sum correspondences

Similar to the Hilbert space case: Given two (A, B)-correspondences E and F,
we can form a direct-sum (A, B)-correspondence E @ F.

Tensor product correspondences
Given an (A, B)-correspondence E and a (B, C)-correspondence F, we form

E®F =span{{®@v: { € E,y € F}
where we identify
(€ -b)@v=¢@(b7)
Then E ® F is a (tensor product) (A, C)-correspondence subject to
a-((®7)=(-8®y ((®7) c=£a(y-0),
<£ ®7, 51 & 7/>E®F = <<’£>£/>E Y ’Y,>F .

Operators between tensor product correspondences

For T € L?(E1, E2) and S € L7(F1, F2) with S a B-module map we define
TRSeLIEL®FL,E2® F) by

(TesS)Een) =(Te(Sn) (€Euneh)



Correspondence-representation pairs and their duals
CR-pairs
A correspondence-representation pair (CR-pair) is a pair (E, o) consisting of:
e a W*-(A, A)-correspondence E;
e a non-degenerate x-homomorphism o : A — L(H), H some Hilbert space.

Then H is an (A, C)-correspondence with left A-action given by o.



Correspondence-representation pairs and their duals
CR-pairs
A correspondence-representation pair (CR-pair) is a pair (E, o) consisting of:
e a W*-(A, A)-correspondence E;
e a non-degenerate x-homomorphism o : A — L(H), H some Hilbert space.
Then H is an (A, C)-correspondence with left A-action given by o.
Dual CR-pairs
Given a CR-pair (E, o) define
E°:={n:H— E®H:nis an A-module map}
a(A) :={b€ L(H): bo(a) =c(a)b (ac A)}.
THM.(Muhly-Solel, 2004) E° is a W*~(c(A)’, o(A)")-correspondence with:
bin b= (le@b)nby (n',n)=n"n" (n,n € E”, by, br € a(A)).
Together with identity representation ¢ : o(A)" — L(H), t(b) = b, the pair
(E?, 1) forms a CR-pair. Finally, for n =0,1,2,... there exists a unitary map

®,: (E)*"Q@H — E®"QH,
O, @ @m R u) = (lggn-—1 @) -+ (I @ m2)mu,

where E®® = A, E®! = E, and E®™ = E ® E®", and similarly for E°-



Main example revisited (1)

Take A = L(U), E = LU, UY).
e CR-pair (E,0): 0: A— LU RK), 0(A) = AR Ik, for some fixed Hilbert
space K.

e Special case: £ = C (commutative) and K = £*(Z) (noncommutative).
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Main example revisited (1)

Take A = L(U), E = LU, UY).

e CR-pair (E,0): 0: A— LU RK), 0(A) = AR Ik, for some fixed Hilbert
space K.

e Special case: £ = C (commutative) and K = £*(Z) (noncommutative).
e Dual of (E,o):
o(AY ={ly®M: M € LK)} = L(K);
b ® Tq
E° = : C T, Ta € L(K) p =2 L(K,K9);
hy ® Ty
U(B) =l ®B e LU®®K).
e Then ., .,
E®" = cu,u'), E®" =~ £(k, K1),
EoUeK) 2 UeK)), E®oUeK)=UeK) .
Note: d" = #words in {1,...,d} of length n.



Dissipative systems
Given a CR-pair (E, o), we consider a contractive system matrix
A B | [X]|_ | EP0X
C D|'| H H

where X is some (o(.A)’, C)-correspondence (i.e., a Hilbert space with a left
o(A) -action) and A, B, C and D are o(A)’-module maps.
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C D| | H H
where X is some (o(.A)’, C)-correspondence (i.e., a Hilbert space with a left

o(A) -action) and A, B, C and D are o(A)’-module maps.
The system equations corresponding to this system matrix are given by

x(n+1) = Anx(n)+ B,®;u(n),
n=0,1,2,...
y(n) = &,Cix(n)+ &,D,;u(n),
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y(n),u(n) € E¥" @M, x(n) € ()" @ X
and

An = I(Ea)®n®A, Bn = I(Ea)®n®B, Cn = I(Ea)®n®C, Dn = I(Eu)®n®D.



Dissipative systems

Given a CR-pair (E, o), we consider a contractive system matrix
A Bl [x]_[Eox
C D| | H H
where X is some (o(.A)’, C)-correspondence (i.e., a Hilbert space with a left

o(A) -action) and A, B, C and D are o(A)’-module maps.
The system equations corresponding to this system matrix are given by

x(n+1) = Anx(n)+ B,®;u(n),
n=0,1,2,...
y(n) = &,Cix(n)+ &,D,;u(n),
where
y(n),u(n) € E¥" @M, x(n) € ()" @ X
and

An = I(Ea)®n®A, Bn = I(Ea)®n®B, Cn = I(Ea)®n®C, Dn = I(Eu)®n®D.

When x(0) = xp € X is fixed, then x = (x(n))rez, and y = (y(n))nez, are
completely determined by the input sequence u = (u(n))ncz, -



The Hilbert spaces F2(E, o) and H?(E, o)

Given a CR-pair (E, o), we define the Fock space (A, C)-correspondence

(oo}

FX(E,0) = EP(E*" @ H).

n=0



The Hilbert spaces F2(E, o) and H?(E, o)

Given a CR-pair (E, o), we define the Fock space (A, C)-correspondence

(oo}
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n=0

To make the transfer from the "time domain” to the "frequency domain” we
introduce the generalizes disk:

D((E*)" ) ={n:E@H —H:n" € E7, |n]| <1}.
For n € D((E?)*) we define the generalized powers:

=l ®n) (legnr @n) : E2* @ H — H, and set n° = Iy.



The Hilbert spaces F2(E, o) and H?(E, o)

Given a CR-pair (E, o), we define the Fock space (A, C)-correspondence

(oo}

FX(E,0) = EP(E*" @ H).

n=0

To make the transfer from the "time domain” to the "frequency domain” we
introduce the generalizes disk:

D((E7)") = {n: E@H —Hin" € E7, nll < 1}.
For n € D((E?)*) we define the generalized powers:
=l ®n) (legnr @n) : E2* @ H — H, and set n° = Iy.
The Z-trfnsform f — f in this setting sends an f = (f,)scz, € F2(E,0) to the
function f : D((E?)*) x o(A) — H given by
F(n. b) = i 1 (Iger @ b)f.
k=0

The space H?(E, o) consisting of such functions f is a Hilbert space (with
11l = Ifll 72(e,0)) with a left o(.A) -action given by (b'f)(n, b) = f(n, bb").



Main result

THM.(Variation on Muhly-Solel '08; see also Ball-Biswas-Fang-tH '08)
Given a CR-pair (E, o) and a dissipative system

pap { A G n=0,1,2,...

y(n) = &,Cx(n)+ ®,D,®;u(n),

with x(0) = 0, and u = (u(n))necz, € F>(E,o), then the output sequence
y = (y(n))nez, is in F2(E,o), and the Z-transforms i and § of u and y are
related through the input-output map

y(n,b) = Te(m)a(n,b) (n € D((E”)"), b€ a(A)),
where the transfer function Tx : D((E?)*) — L(H) is given by

Ts(n) =D+ C(l — L;-A)"'L;.B
with Lyx : X — E° @ X, Lpx=n"Qx.

Moreover, Tx defines a contractive multiplier on H*(E, o), and all contractive
multiplier on H*(E, o) are obtained in this way.



Main example revisited (2)
Take A= L(U), E= LU, U, 0(A) = AR Ix € LU R K). Then a
dissipative system matrix has the form

A1®lc Bi®Ikc A1 By
: : >~ || ] =[x,
Al Byl iy, | L] )
CRlx DRl c D
corresponding to a system
o x(n+1) = ,:4nx(n) + E,,u(n)7 (neZ.)
y(n) = Gax(n)+ Dyu(n),

with inputs, outputs and states u(n),y(n) € (U ® K)"), x(n) € (X @ )\
and where A1®lxc 3 B1®Ixc
([ : ) , Bn = blockdiag;_;  4n ({ :|> )
By®lc

An = blockdiag;_; . 4n :
Ad®’l€ /.

C» = blockdiag;_; _ 4n ([¢®Ix]), Dn = blockdiag,_; _4n ([P2Ic]).




Main example revisited (2)
Take A= L(U), E= LU, U, 0(A) = AR Ix € LU R K). Then a
dissipative system matrix has the form

A1®lc Bi®Ikc A1 By
: : o X [x7],
Al Byl iy, | L] )
CRlx DRl c D
corresponding to a system
o x(n+1) = ,:4nx(n) + ?,,u(n)7 (neZ.)
y(n) = Gax(n)+ Dyu(n),

with inputs, outputs and states u(n),y(n) € (U ® K)"), x(n) € (X @ )\

and where A1®lxc 3 B1®Ixc
An = blockdiag;_; . 4n ([ : ) , By = blockdiag;_; 4 ({ : :|> ,
By®lxc

Ad®’l€ /.

C» = blockdiag;_; _ 4n ([¢®Ix]), Dn = blockdiag,_; _4n ([P2Ic]).

Noncommutative nD systems

Identify
d
U = b u
a€Fq4,length(a)=n

and untangle the equations.



Main example revisited (2)
Take A= L(U), E= LU, U, 0(A) = AR Ix € LU R K). Then a
dissipative system matrix has the form

A1®lc Bi®Ikc A1 By
: : o X [x7],
Al Byl iy, | L] )
CRlx DRl c D
corresponding to a system
o x(n+1) = ,:4nx(n) + E,,u(n)7 (neZ.)
y(n) = Gax(n)+ Dyu(n),

with inputs, outputs and states u(n),y(n) € (U ® K)"), x(n) € (X @ )\
and where A1®lxc 3 B1®Ixc
([ : ) , Bn = blockdiag;_;  4n ({ :|> )
By®lc

An = blockdiag;_; . 4n :
Ad®’l€ /.

C» = blockdiag;_; _ 4n ([¢®Ix]), Dn = blockdiag,_; _4n ([P2Ic]).

Commutative nD systems
Also symmetrize

W= Y ue) (nezd)

a€Fga(a)=n

via the abelianization map
a(a) = (ny, ..., ng) if letter ik appears ny times.



Main example revisited (3)
The Fock space F2(E, o) is equal to

®nez,. (U D IC)(dn) = @nezji,@,c(words of length n) = Ea@K(}'d).
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It follows that if x(0) = 0 and u = (u(n))nez, = (u(a))acr, € Gigx(Fa),
then y = (y(n))nez, = (y(a))acr, € Lo (Fa) and after the Z-transform

y(T) = T=(T)a(T),
where T=[ T, -+ Tg]isin
D(E))={T=][ T - Tq]:Teel(K), |TI<1}
Here the transfer function Tx and Z-transforms & and § are given by
Te(T) = D@k + Cohe(l - Yi, Ac® T) (L, A ),
0(T) =2 er, (ki @T)u(a), 9(T) =3 cr, (i @ T")y(a),

where T® = Ty, - Ty, incase o = e, - - - € € Fyq.



Main example revisited (3)
The Fock space F2(E, o) is equal to
®nez,. (U D IC)(dn) = @nezji,@,c(words of length n) = éa@K(}'d).

It follows that if x(0) = 0 and u = (u(n))nez, = (u(a))acr, € Gigx(Fa),
then y = (y(n))nez, = (y(a))acr, € Lo (Fa) and after the Z-transform

y(T) = T=(T)a(T),
where T=[ T, -+ Tg]isin
D(E))={T=][ T - Tq]:Teel(K), |TI<1}
Here the transfer function Tx and Z-transforms & and § are given by
Te(T) = D@k + Cohe(l - Yi, Ac® T) (L, A ),
0(T) =2 er, (ki @T)u(a), 9(T) =3 cr, (i @ T")y(a),

where T® = Ty, - Ty, incase o = e, - - - € € Fyq.

Noncommutative nD systems (K = (*(Z)):
Identify T1,..., Ty € L(¢*(Z)) with noncommutative indeterminates.



Main example revisited (3)
The Fock space F2(E, o) is equal to
®nez,. (U D IC)(dn) = @nezji,@,c(words of length n) = éa@K(}'d).

It follows that if x(0) = 0 and u = (u(n))nez, = (u(a))acr, € Gigx(Fa),
then y = (y(n))nez, = (y(a))acr, € Lo (Fa) and after the Z-transform

y(T) = T=(T)a(T),
where T=[ T, -+ Tg]isin
D(E))={T=][ T - Tq]:Teel(K), |TI<1}
Here the transfer function Tx and Z-transforms & and § are given by
Te(T) = D@k + Cohe(l - Yi, Ac® T) (L, A ),
0(T) =2 er, (ki @T)u(a), 9(T) =3 cr, (i @ T")y(a),

where T® = Ty --- Ty, incase o« = e, -+ € € Fq.
n 1 n 1

Commutative nD systems (K = C):

Because the entries in T = (z1,. .., 24) € D((E?)*) € C? commute
(z1,...,2z4) = Z z"u(n)
nEZi

with u(n) defined via symmetrization.
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