A W*-correspondence approach to multidimensional linear dissipative systems

Sanne ter Horst Virginia Tech

nDS 2009 Thessaloniki June 29, 2009

Joint work with J.A. Ball

Noncommutative multidimensional linear dissipative systems

Consider a linear system evolving over \mathcal{F}_d ; the free semigroup of words $\alpha = i_{k_n} \cdots i_{k_1}$ generated by d letters $\{i_1, \ldots, i_d\}$ with neutral element \emptyset :

$$\begin{cases} x(i_k \cdot \alpha) &= A_k x(\alpha) + B_k u(\alpha), \ k = 1, \dots, d, \\ y(\alpha) &= C x(\alpha) + D u(\alpha), \end{cases} (\alpha \in \mathcal{F}_d)$$

with contractive system matrix

$$\left[\begin{array}{cc} A_1 & B_1 \\ \vdots & \vdots \\ A_d & B_d \\ C & D \end{array}\right] : \left[\begin{array}{c} \mathcal{X} \\ \mathcal{U} \end{array}\right] \to \left[\begin{array}{c} \mathcal{X}^d \\ \mathcal{Y} \end{array}\right].$$

Noncommutative multidimensional linear dissipative systems

Consider a linear system evolving over \mathcal{F}_d ; the free semigroup of words $\alpha = i_{k_n} \cdots i_{k_1}$ generated by d letters $\{i_1, \ldots, i_d\}$ with neutral element \emptyset :

$$\begin{cases} x(i_k \cdot \alpha) &= A_k x(\alpha) + B_k u(\alpha), \ k = 1, \dots, d, \\ y(\alpha) &= Cx(\alpha) + Du(\alpha), \end{cases} (\alpha \in \mathcal{F}_d)$$

with contractive system matrix

$$\begin{bmatrix} A_1 & B_1 \\ \vdots & \vdots \\ A_d & B_d \\ C & D \end{bmatrix} : \begin{bmatrix} \mathcal{X} \\ \mathcal{U} \end{bmatrix} \to \begin{bmatrix} \mathcal{X}^d \\ \mathcal{Y} \end{bmatrix}.$$

When $x(\emptyset)=0$ and $u=(u(\alpha))_{\alpha\in\mathcal{F}_d}$ is in $\ell^2_{\mathcal{U}}(\mathcal{F}_d)$, then $y=(y(\alpha))_{\alpha\in\mathcal{F}_d}$ is in $\ell^2_{\mathcal{Y}}(\mathcal{F}_d)$ and the input-output map in the frequency domain is given by

$$\hat{y}(z) = T_{\Sigma}(z)\hat{u}(z)$$

where the transfer function $T_{\Sigma}(z)$ and the Z-transforms $\hat{u}(z)$ and $\hat{y}(z)$ are given by formal power series in noncommuting indeterminates $z = (z_1, \dots, z_d)$:

$$T_{\Sigma}(z) = D + C(I - \sum_{k=1}^{d} z_k A_k)^{-1} (\sum_{i=1}^{d} z_i B_i),$$

$$\hat{u}(z) = \sum_{\alpha \in \mathcal{F}_d} z^{\alpha} u(\alpha), \quad \hat{y}(z) = \sum_{\alpha \in \mathcal{F}_d} z^{\alpha} y(\alpha),$$

where $z^{\alpha}=z_{k_n}\cdots z_{k_1}$ in case $\alpha=i_{k_n}\cdots i_{k_1}$.

Commutative multidimensional linear dissipative systems

Consider a linear system evolving over \mathbb{Z}_+^d :

$$\begin{cases} x(\mathbf{n}) &= \sum_{k=1}^{d} A_k x(\mathbf{n} - e_k) + B_k u(\mathbf{n} - e_k), \\ y(\mathbf{n}) &= Cx(\mathbf{n}) + Du(\mathbf{n}), \end{cases} (\mathbf{n} = (n_1, \dots, n_d) \in \mathbb{Z}_+^d)$$

where $e_1=(1,0,\ldots,0),\ldots,e_d=(0,\ldots,0,1)$ and we set $x(\mathbf{n})=0$ and $u(\mathbf{n})=0$ for $\mathbf{n}\in\mathbb{Z}^d-\mathbb{Z}^d_+$, with contractive system matrix

$$\begin{bmatrix} A_1 & B_1 \\ \vdots & \vdots \\ A_d & B_d \\ C & D \end{bmatrix} : \begin{bmatrix} \mathcal{X} \\ \mathcal{U} \end{bmatrix} \to \begin{bmatrix} \mathcal{X}^d \\ \mathcal{Y} \end{bmatrix}.$$

Commutative multidimensional linear dissipative systems

Consider a linear system evolving over \mathbb{Z}_+^d :

$$\begin{cases} x(\mathbf{n}) &= \sum_{k=1}^{d} A_k x(\mathbf{n} - e_k) + B_k u(\mathbf{n} - e_k), \\ y(\mathbf{n}) &= C x(\mathbf{n}) + D u(\mathbf{n}), \end{cases} (\mathbf{n} = (n_1, \dots, n_d) \in \mathbb{Z}_+^d)$$

where $e_1 = (1, 0, \dots, 0), \dots, e_d = (0, \dots, 0, 1)$ and we set $x(\mathbf{n}) = 0$ and $u(\mathbf{n}) = 0$ for $\mathbf{n} \in \mathbb{Z}^d - \mathbb{Z}^d_+$, with contractive system matrix

$$\begin{bmatrix} A_1 & B_1 \\ \vdots & \vdots \\ A_d & B_d \\ C & D \end{bmatrix} : \begin{bmatrix} \mathcal{X} \\ \mathcal{U} \end{bmatrix} \to \begin{bmatrix} \mathcal{X}^d \\ \mathcal{Y} \end{bmatrix}.$$

When $x(\mathbf{n})=0$ for $\mathbf{n}=(0,\ldots,0)$ and $u=(w(\mathbf{n})u(\mathbf{n}))_{\mathbf{n}\in\mathbb{Z}_+^d}$ is in $\ell^2_{\mathcal{U}}(\mathbb{Z}_+^d)$, then $y=(w(\mathbf{n})y(\mathbf{n}))_{\mathbf{n}\in\mathbb{Z}_+^d}$ is in $\ell^2_{\mathcal{V}}(\mathbb{Z}_+^d)$, where $(w(\mathbf{n}))_{\mathbf{n}\in\mathbb{Z}_+^d}$ is some weighting sequence, and:

$$\hat{\mathbf{y}}(\lambda_1,\ldots,\lambda_d) = T_{\Sigma}(\lambda_1,\ldots,\lambda_d)\hat{\mathbf{u}}(\lambda_1,\ldots,\lambda_d) \quad (|\lambda_1|^2 + \cdots + |\lambda_d|^2 < 1)$$

where the transfer function T_{Σ} and the Z-transforms \hat{u} and \hat{y} are given by

$$T_{\Sigma}(\lambda_{1},...,\lambda_{d}) = D + C(I - \sum_{k=1}^{d} \lambda_{k} A_{k})^{-1} (\sum_{i=1}^{d} \lambda_{i} B_{i})$$

$$\hat{u}(\lambda_{1},...,\lambda_{d}) = \sum_{(n_{1},...,n_{d}) \in \mathbb{Z}_{d}^{d}} \lambda_{1}^{n_{1}} \cdots \lambda_{d}^{n_{d}} u(n_{1},...,n_{d}) \qquad (|\lambda_{1}|^{2} + \cdots + |\lambda_{d}|^{2} < 1).$$

$$\hat{y}(\lambda_1,\ldots,\lambda_d) = \sum_{(n_1,\ldots,n_d)\in\mathbb{Z}^d_+} \lambda_1^{n_1}\cdots\lambda_d^{n_d}y(n_1,\ldots,n_d)$$

W*-correspondences

C*-correspondences

Given C^* -algebras $\mathcal A$ and $\mathcal B$, a linear space E is an $(\mathcal A,\mathcal B)$ -correspondence when E is a bi-module with a left $\mathcal A$ -action and right $\mathcal B$ -action, with a $\mathcal B$ -valued inner product satisfying the following axioms: For $\xi,\zeta,\eta\in E,\ \lambda,\mu\in \mathbb C,\ a\in \mathcal A,\ b\in \mathcal B$

- $\langle \lambda \xi + \mu \zeta, \eta \rangle_E = \lambda \langle \xi, \eta \rangle_E + \mu \langle \zeta, \eta \rangle_E$;
- $\bullet \ \langle \xi \cdot b, \eta \rangle_E = \langle \xi, \eta \rangle_E \, b; \qquad \langle a \cdot \xi, \eta \rangle_E = \langle \xi, a^* \cdot \eta \rangle_E \, ;$
- $\langle \xi, \eta \rangle_{\it E}^* = \langle \eta, \xi \rangle_{\it E}$;
- $\langle \xi, \xi \rangle_E \ge 0$; $\langle \xi, \xi \rangle_E = 0$ implies that $\xi = 0$;

and such that E is a Banach space with respect to the norm

 $\|\xi\|_E := \|\langle \xi, \xi \rangle_E\|_{\mathcal{B}}^{\frac{1}{2}}$ for $\xi \in E$, where $\| \|_{\mathcal{B}}$ denotes the norm of \mathcal{B} .

W*-correspondences

C*-correspondences

Given C^* -algebras $\mathcal A$ and $\mathcal B$, a linear space E is an $(\mathcal A,\mathcal B)$ -correspondence when E is a bi-module with a left $\mathcal A$ -action and right $\mathcal B$ -action, with a $\mathcal B$ -valued inner product satisfying the following axioms: For $\xi,\zeta,\eta\in E,\ \lambda,\mu\in \mathbb C,\ a\in \mathcal A,\ b\in \mathcal B$

- $\langle \lambda \xi + \mu \zeta, \eta \rangle_{E} = \lambda \langle \xi, \eta \rangle_{E} + \mu \langle \zeta, \eta \rangle_{E}$;
- $\langle \xi \cdot b, \eta \rangle_E = \langle \xi, \eta \rangle_E b;$ $\langle a \cdot \xi, \eta \rangle_E = \langle \xi, a^* \cdot \eta \rangle_E;$
- $\langle \xi, \eta \rangle_E^* = \langle \eta, \xi \rangle_E$;
- $\langle \xi, \xi \rangle_E \ge 0$; $\langle \xi, \xi \rangle_E = 0$ implies that $\xi = 0$;

and such that E is a Banach space with respect to the norm

 $\|\xi\|_{\mathcal{E}}:=\|\left\langle \xi,\xi\right\rangle _{\mathcal{E}}\|_{\mathcal{B}}^{\frac{1}{2}}\ \text{for}\ \xi\in\mathcal{E},\ \text{where}\ \|\ \|_{\mathcal{B}}\ \text{denotes the norm of}\ \mathcal{B}.$

Notation and terminology

Given two (A, B)-correspondences E_1 and E_2 :

- $\mathcal{L}^{a}(E_{1}, E_{2})$ denotes the set of bounded linear *adjointable* operators $T: E_{1} \rightarrow E_{2}$ (i.e. $\langle T\xi_{1}, \xi_{2} \rangle_{E_{2}} = \langle \xi_{1}, T^{*}\xi_{2} \rangle_{E_{1}}$ for some $T \in \mathcal{L}(E_{2}, E_{1})$).
- An operator $T \in \mathcal{L}^a(E_1, E_2)$ is called an \mathcal{A} -module map if

$$T(a\xi) = a(T\xi) \quad (\xi \in E_1, a \in A).$$

W*-correspondences

C*-correspondences

Given C^* -algebras $\mathcal A$ and $\mathcal B$, a linear space E is an $(\mathcal A,\mathcal B)$ -correspondence when E is a bi-module with a left $\mathcal A$ -action and right $\mathcal B$ -action, with a $\mathcal B$ -valued inner product satisfying the following axioms: For $\xi,\zeta,\eta\in E,\ \lambda,\mu\in \mathbb C,\ a\in \mathcal A,\ b\in \mathcal B$

- $\langle \lambda \xi + \mu \zeta, \eta \rangle_{E} = \lambda \langle \xi, \eta \rangle_{E} + \mu \langle \zeta, \eta \rangle_{E}$;
- $\bullet \ \langle \xi \cdot b, \eta \rangle_E = \langle \xi, \eta \rangle_E \, b; \qquad \langle a \cdot \xi, \eta \rangle_E = \langle \xi, a^* \cdot \eta \rangle_E \, ;$
- $\langle \xi, \eta \rangle_E^* = \langle \eta, \xi \rangle_E$;
- $\langle \xi, \xi \rangle_E \ge 0$; $\langle \xi, \xi \rangle_E = 0$ implies that $\xi = 0$;

and such that E is a Banach space with respect to the norm

 $\|\xi\|_{\mathcal{E}}:=\|\left\langle \xi,\xi\right\rangle _{\mathcal{E}}\|_{\mathcal{B}}^{\frac{1}{2}} \text{ for }\xi\in\mathcal{E}, \text{ where }\|\ \|_{\mathcal{B}} \text{ denotes the norm of }\mathcal{B}.$

W^* -correspondences

An (A, B)-correspondence E is a W^* -(A, B)-correspondence if in addition

- \mathcal{A} and \mathcal{B} are von Neumann algebras;
- $T \in \mathcal{L}^a(E, \mathcal{B}) \Longrightarrow$ there exists a $\xi_T \in E$ so that $T\xi = \langle \xi, \xi_T \rangle$ for all $\xi \in E$.

Examples of W^* -correspondences

- 1. Any Hilbert space is a W^* -(\mathbb{C}, \mathbb{C})-correspondence.
- 2. $\mathcal{AB} = E = \mathcal{L}(\mathcal{U})$, for some Hilbert space \mathcal{U} , is a $(\mathcal{L}(\mathcal{U}), \mathcal{L}(\mathcal{U}))$ -correspondence with inner product $\langle a, b \rangle = b^*a$. The generating bounded linear operator on $\mathcal{L}(\mathcal{U})$:

$$K\mapsto T_1KT_2$$
 for given $T_1,T_2\in\mathcal{L}(\mathcal{U})$

- is adjointable $\iff T_2 = \lambda I_{\mathcal{U}}$ for some $\lambda \in \mathbb{D}$;
- is a $\mathcal{L}(\mathcal{U})$ -module map $\iff T_1 = \lambda I_{\mathcal{U}}$ for some $\lambda \in \mathbb{D}$.
- 3. Main example: $A = B = \mathcal{L}(\mathcal{U})$ and $E = \mathcal{L}(\mathcal{U}, \mathcal{U}^d)$, operator columns of length d, subject to

$$A_1 \cdot \left[\begin{array}{c} T_1 \\ \vdots \\ T_d \end{array} \right] \cdot A_2 = \left[\begin{array}{c} A_1 T_1 A_2 \\ \vdots \\ A_1 T_d A_2 \end{array} \right], \quad \left\langle \left[\begin{array}{c} T_1 \\ \vdots \\ T_d \end{array} \right], \left[\begin{array}{c} S_1 \\ \vdots \\ S_d \end{array} \right] \right\rangle = \sum_{k=1}^d S_k^* T_k.$$

- 4. Other examples:
 - systems evolving over quiver algebras;
 - timevarying systems (Alpay-Ball-Peretz '02);
 - analytic crossed-product algebras.

Constructing new correspondences

Direct sum correspondences

Similar to the Hilbert space case: Given two (A, B)-correspondences E and F, we can form a *direct-sum* (A, B)-correspondence $E \oplus F$.

Tensor product correspondences

Given an (A, B)-correspondence E and a (B, C)-correspondence F, we form

$$E \otimes F = \overline{\operatorname{span}} \{ \xi \otimes \gamma \colon \xi \in E, \gamma \in F \}$$

where we identify

$$(\xi \cdot b) \otimes \gamma = \xi \otimes (b \cdot \gamma).$$

Then $E \otimes F$ is a (tensor product) (A, C)-correspondence subject to

$$a \cdot (\xi \otimes \gamma) = (a \cdot \xi) \otimes \gamma, \qquad (\xi \otimes \gamma) \cdot c = \xi \otimes (\gamma \cdot c),$$
$$\langle \xi \otimes \gamma, \xi' \otimes \gamma' \rangle_{E \otimes F} = \langle \langle \xi, \xi' \rangle_E \cdot \gamma, \gamma' \rangle_F.$$

Constructing new correspondences

Direct sum correspondences

Similar to the Hilbert space case: Given two (A, \mathcal{B}) -correspondences E and F, we can form a *direct-sum* (A, \mathcal{B}) -correspondence $E \oplus F$.

Tensor product correspondences

Given an (A, B)-correspondence E and a (B, C)-correspondence F, we form

$$E \otimes F = \overline{\operatorname{span}} \{ \xi \otimes \gamma \colon \xi \in E, \gamma \in F \}$$

where we identify

$$(\xi \cdot b) \otimes \gamma = \xi \otimes (b \cdot \gamma).$$

Then $E \otimes F$ is a (tensor product) (A, C)-correspondence subject to

$$a \cdot (\xi \otimes \gamma) = (a \cdot \xi) \otimes \gamma, \qquad (\xi \otimes \gamma) \cdot c = \xi \otimes (\gamma \cdot c),$$
$$\langle \xi \otimes \gamma, \xi' \otimes \gamma' \rangle_{E \otimes F} = \langle \langle \xi, \xi' \rangle_E \cdot \gamma, \gamma' \rangle_F.$$

Operators between tensor product correspondences

For $T \in \mathcal{L}^a(E_1, E_2)$ and $S \in \mathcal{L}^a(F_1, F_2)$ with S a \mathcal{B} -module map we define $T \otimes S \in \mathcal{L}^a(E_1 \otimes F_1, E_2 \otimes F_2)$ by

$$(T \otimes S)(\xi \otimes \eta) = (T\xi) \otimes (S\eta) \quad (\xi \in E_1, \eta \in F_1).$$

Correspondence-representation pairs and their duals

CR-pairs

A correspondence-representation pair (CR-pair) is a pair (E, σ) consisting of:

- a W^* -(A, A)-correspondence E;
- a non-degenerate *-homomorphism $\sigma: \mathcal{A} \to \mathcal{L}(\mathcal{H})$, \mathcal{H} some Hilbert space.

Then \mathcal{H} is an $(\mathcal{A}, \mathbb{C})$ -correspondence with left \mathcal{A} -action given by σ .

Correspondence-representation pairs and their duals

CR-pairs

A correspondence-representation pair (CR-pair) is a pair (E, σ) consisting of:

- a W^* -(\mathcal{A}, \mathcal{A})-correspondence E;
- a non-degenerate *-homomorphism $\sigma: \mathcal{A} \to \mathcal{L}(\mathcal{H}), \mathcal{H}$ some Hilbert space.

Then \mathcal{H} is an $(\mathcal{A}, \mathbb{C})$ -correspondence with left \mathcal{A} -action given by σ .

Dual CR-pairs

Given a CR-pair (E, σ) define

$$E^{\sigma} := \{ \eta : \mathcal{H} \to E \otimes \mathcal{H} \colon \eta \text{ is an } \mathcal{A}\text{-module map} \}$$

$$\sigma(\mathcal{A})' := \{ b \in \mathcal{L}(\mathcal{H}) \colon b\sigma(a) = \sigma(a)b \quad (a \in \mathcal{A}) \}.$$

THM.(Muhly-Solel, 2004) E^{σ} is a W^* - $(\sigma(A)', \sigma(A)')$ -correspondence with:

$$b_1 \cdot \eta \cdot b_2 = (I_E \otimes b_1) \eta b_2 \quad \langle \eta', \eta \rangle = \eta^* \eta' \quad (\eta, \eta' \in E^{\sigma}, b_1, b_2 \in \sigma(\mathcal{A})').$$

Together with identity representation $\iota: \sigma(\mathcal{A})' \to \mathcal{L}(\mathcal{H}), \ \iota(b) = b$, the pair (E^{σ}, ι) forms a CR-pair. Finally, for $n = 0, 1, 2, \ldots$ there exists a unitary map

$$\begin{split} \Phi_n : (E^\sigma)^{\otimes n} \otimes \mathcal{H} \to E^{\otimes n} \otimes \mathcal{H}, \\ \Phi_n(\eta_n \otimes \cdots \otimes \eta_1 \otimes u) = (I_{E^{\otimes n-1}} \otimes \eta_n) \cdots (I_E \otimes \eta_2) \eta_1 u, \end{split}$$

where
$$E^{\otimes 0} = A$$
, $E^{\otimes 1} = E$, and $E^{\otimes n+1} = E \otimes E^{\otimes n}$, and similarly for $E^{\sigma} = A$

Take $A = \mathcal{L}(\mathcal{U})$, $E = \mathcal{L}(\mathcal{U}, \mathcal{U}^d)$.

- CR-pair (E, σ) : $\sigma : A \to \mathcal{L}(\mathcal{U} \otimes \mathcal{K})$, $\sigma(A) = A \otimes I_{\mathcal{K}}$, for some fixed Hilbert space \mathcal{K} .
- Special case: $\mathcal{K}=\mathbb{C}$ (commutative) and $\mathcal{K}=\ell^2(\mathbb{Z})$ (noncommutative).

Take $A = \mathcal{L}(\mathcal{U})$, $E = \mathcal{L}(\mathcal{U}, \mathcal{U}^d)$.

- CR-pair (E, σ) : $\sigma : A \to \mathcal{L}(\mathcal{U} \otimes \mathcal{K})$, $\sigma(A) = A \otimes I_{\mathcal{K}}$, for some fixed Hilbert space \mathcal{K} .
- Special case: $\mathcal{K} = \mathbb{C}$ (commutative) and $\mathcal{K} = \ell^2(\mathbb{Z})$ (noncommutative).
- Dual of (E, σ):

$$\sigma(\mathcal{A})' = \{ I_{\mathcal{U}} \otimes M \colon M \in \mathcal{L}(\mathcal{K}) \} \cong \mathcal{L}(\mathcal{K});$$

$$E^{\sigma} = \left\{ \begin{bmatrix} I_{\mathcal{U}} \otimes T_1 \\ \vdots \\ I_{\mathcal{U}} \otimes T_d \end{bmatrix} \colon T_1, \dots, T_d \in \mathcal{L}(\mathcal{K}) \right\} \cong \mathcal{L}(\mathcal{K}, \mathcal{K}^d);$$

$$\iota(B) = I_{\mathcal{U}} \otimes B \in \mathcal{L}(\mathcal{U} \otimes \mathcal{K}).$$

Take $A = \mathcal{L}(\mathcal{U})$, $E = \mathcal{L}(\mathcal{U}, \mathcal{U}^d)$.

- CR-pair (E, σ) : $\sigma : A \to \mathcal{L}(\mathcal{U} \otimes \mathcal{K})$, $\sigma(A) = A \otimes I_{\mathcal{K}}$, for some fixed Hilbert space \mathcal{K} .
- Special case: $\mathcal{K}=\mathbb{C}$ (commutative) and $\mathcal{K}=\ell^2(\mathbb{Z})$ (noncommutative).
- Dual of (*E*, *σ*):

$$\sigma(\mathcal{A})' = \{ h_{\mathcal{U}} \otimes M \colon M \in \mathcal{L}(\mathcal{K}) \} \cong \mathcal{L}(\mathcal{K});$$

$$E^{\sigma} = \left\{ \begin{bmatrix} h_{\mathcal{U}} \otimes T_1 \\ \vdots \\ h_{\mathcal{U}} \otimes T_d \end{bmatrix} \colon T_1, \dots, T_d \in \mathcal{L}(\mathcal{K}) \right\} \cong \mathcal{L}(\mathcal{K}, \mathcal{K}^d);$$

$$\iota(B) = h_{\mathcal{U}} \otimes B \in \mathcal{L}(\mathcal{U} \otimes \mathcal{K}).$$

Then

$$E^{\otimes n} = \mathcal{L}(\mathcal{U}, \mathcal{U}^{(d^n)}), \qquad E^{\sigma \otimes n} \cong \mathcal{L}(\mathcal{K}, \mathcal{K}^{(d^n)}),$$
 $E^{\otimes n} \otimes (\mathcal{U} \otimes \mathcal{K}) \cong (\mathcal{U} \otimes \mathcal{K})^{(d^n)}, \quad E^{\sigma \otimes n} \otimes (\mathcal{U} \otimes \mathcal{K}) \cong (\mathcal{U} \otimes \mathcal{K})^{(d^n)}.$

Note: $d^n = \#$ words in $\{1, \ldots, d\}$ of length n.

Dissipative systems

Given a CR-pair (E, σ) , we consider a contractive system matrix

$$\left[\begin{array}{cc} A & B \\ C & D \end{array}\right] : \left[\begin{array}{c} \mathcal{X} \\ \mathcal{H} \end{array}\right] \to \left[\begin{array}{c} E^{\sigma} \otimes \mathcal{X} \\ \mathcal{H} \end{array}\right]$$

where \mathcal{X} is some $(\sigma(\mathcal{A})', \mathbb{C})$ -correspondence (i.e., a Hilbert space with a left $\sigma(\mathcal{A})'$ -action) and A, B, C and D are $\sigma(\mathcal{A})'$ -module maps.

Dissipative systems

Given a CR-pair (E, σ) , we consider a contractive system matrix

$$\left[\begin{array}{cc} A & B \\ C & D \end{array}\right]: \left[\begin{array}{c} \mathcal{X} \\ \mathcal{H} \end{array}\right] \rightarrow \left[\begin{array}{c} E^{\sigma} \otimes \mathcal{X} \\ \mathcal{H} \end{array}\right]$$

where \mathcal{X} is some $(\sigma(\mathcal{A})', \mathbb{C})$ -correspondence (i.e., a Hilbert space with a left $\sigma(\mathcal{A})'$ -action) and A, B, C and D are $\sigma(\mathcal{A})'$ -module maps.

The system equations corresponding to this system matrix are given by

$$\begin{cases} x(n+1) = A_n x(n) + B_n \Phi_n^* u(n), \\ y(n) = \Phi_n C_n x(n) + \Phi_n D_n \Phi_n^* u(n), \end{cases} n = 0, 1, 2, \dots$$

where

$$y(n), u(n) \in E^{\otimes n} \otimes \mathcal{H}, \quad x(n) \in (E^{\sigma})^{\otimes n} \otimes \mathcal{X}$$

and

$$A_n:=I_{(E^\sigma)^{\otimes n}}\otimes A,\quad B_n:=I_{(E^\sigma)^{\otimes n}}\otimes B,\quad C_n:=I_{(E^\sigma)^{\otimes n}}\otimes C,\quad D_n:=I_{(E^\sigma)^{\otimes n}}\otimes D.$$

Dissipative systems

Given a CR-pair (E, σ) , we consider a contractive system matrix

$$\left[\begin{array}{cc} A & B \\ C & D \end{array}\right] : \left[\begin{array}{c} \mathcal{X} \\ \mathcal{H} \end{array}\right] \to \left[\begin{array}{c} E^{\sigma} \otimes \mathcal{X} \\ \mathcal{H} \end{array}\right]$$

where \mathcal{X} is some $(\sigma(\mathcal{A})', \mathbb{C})$ -correspondence (i.e., a Hilbert space with a left $\sigma(\mathcal{A})'$ -action) and A, B, C and D are $\sigma(\mathcal{A})'$ -module maps.

The system equations corresponding to this system matrix are given by

$$\begin{cases} x(n+1) &= A_n x(n) + B_n \Phi_n^* u(n), \\ y(n) &= \Phi_n C_n x(n) + \Phi_n D_n \Phi_n^* u(n), \end{cases} n = 0, 1, 2, \dots$$

where

$$y(n), u(n) \in E^{\otimes n} \otimes \mathcal{H}, \quad x(n) \in (E^{\sigma})^{\otimes n} \otimes \mathcal{X}$$

and

$$A_n:=I_{(E^{\sigma})^{\otimes n}}\otimes A,\quad B_n:=I_{(E^{\sigma})^{\otimes n}}\otimes B,\quad C_n:=I_{(E^{\sigma})^{\otimes n}}\otimes C,\quad D_n:=I_{(E^{\sigma})^{\otimes n}}\otimes D.$$

When $x(0) = x_0 \in \mathcal{X}$ is fixed, then $x = (x(n))_{n \in \mathbb{Z}_+}$ and $y = (y(n))_{n \in \mathbb{Z}_+}$ are completely determined by the input sequence $u = (u(n))_{n \in \mathbb{Z}_+}$.

The Hilbert spaces $\mathcal{F}^2(E,\sigma)$ and $H^2(E,\sigma)$

Given a CR-pair (E, σ) , we define the Fock space (A, \mathbb{C}) -correspondence

$$\mathcal{F}^2(E,\sigma):=\bigoplus_{n=0}^{\infty}(E^{\otimes n}\otimes\mathcal{H}).$$

The Hilbert spaces $\mathcal{F}^2(E,\sigma)$ and $H^2(E,\sigma)$

Given a CR-pair (E, σ) , we define the Fock space (A, \mathbb{C}) -correspondence

$$\mathcal{F}^2(E,\sigma) := \bigoplus_{n=0}^{\infty} (E^{\otimes n} \otimes \mathcal{H}).$$

To make the transfer from the "time domain" to the "frequency domain" we introduce the *generalizes disk*:

$$\mathbb{D}((E^{\sigma})^*) = \{ \eta : E \otimes \mathcal{H} \to \mathcal{H} \colon \eta^* \in E^{\sigma}, \ \|\eta\| < 1 \}.$$

For $\eta \in \mathbb{D}((E^{\sigma})^*)$ we define the *generalized powers*:

$$\eta^k := \eta(\mathit{I}_E \otimes \eta) \cdots (\mathit{I}_{E^{\otimes n-1}} \otimes \eta) : E^{\otimes k} \otimes \mathcal{H} \to \mathcal{H}, \text{ and set } \eta^0 = \mathit{I}_{\mathcal{H}}.$$

The Hilbert spaces $\mathcal{F}^2(E,\sigma)$ and $H^2(E,\sigma)$

Given a CR-pair (E, σ) , we define the Fock space (A, \mathbb{C}) -correspondence

$$\mathcal{F}^2(E,\sigma):=\bigoplus_{n=0}^\infty (E^{\otimes n}\otimes \mathcal{H}).$$

To make the transfer from the "time domain" to the "frequency domain" we introduce the *generalizes disk*:

$$\mathbb{D}((E^{\sigma})^*) = \{ \eta : E \otimes \mathcal{H} \to \mathcal{H} \colon \eta^* \in E^{\sigma}, \ \|\eta\| < 1 \}.$$

For $\eta \in \mathbb{D}((E^{\sigma})^*)$ we define the *generalized powers*:

$$\eta^k := \eta(I_E \otimes \eta) \cdots (I_{E \otimes n-1} \otimes \eta) : E^{\otimes k} \otimes \mathcal{H} \to \mathcal{H}, \text{ and set } \eta^0 = I_{\mathcal{H}}.$$

The *Z*-transform $f \mapsto \hat{f}$ in this setting sends an $f = (f_n)_{n \in \mathbb{Z}_+} \in \mathcal{F}^2(E, \sigma)$ to the function $\hat{f} : \mathbb{D}((E^{\sigma})^*) \times \sigma(\mathcal{A})' \to \mathcal{H}$ given by

$$\hat{f}(\eta,b) = \sum_{k=0}^{\infty} \eta^k (I_{E^{\otimes k}} \otimes b) f_k.$$

The space $H^2(E, \sigma)$ consisting of such functions \hat{f} is a Hilbert space (with $\|\hat{f}\| = \|f\|_{\mathcal{F}^2(E,\sigma)}$) with a left $\sigma(\mathcal{A})'$ -action given by $(b'\hat{f})(\eta,b) = \hat{f}(\eta,bb')$.

Main result

THM.(Variation on Muhly-Solel '08; see also Ball-Biswas-Fang-tH '08) Given a CR-pair (E, σ) and a dissipative system

$$\Sigma := \begin{cases} x(n+1) &= A_n x(n) + B_n \Phi_n^* u(n), \\ y(n) &= \Phi_n C_n x(n) + \Phi_n D_n \Phi_n^* u(n), \end{cases} n = 0, 1, 2, \dots$$

with x(0)=0, and $u=(u(n))_{n\in\mathbb{Z}_+}\in\mathcal{F}^2(E,\sigma)$, then the output sequence $y=(y(n))_{n\in\mathbb{Z}_+}$ is in $\mathcal{F}^2(E,\sigma)$, and the Z-transforms \hat{u} and \hat{y} of u and y are related through the input-output map

$$\hat{y}(\eta, b) = T_{\Sigma}(\eta)\hat{u}(\eta, b) \quad (\eta \in \mathbb{D}((E^{\sigma})^*), b \in \sigma(\mathcal{A})'),$$

where the transfer function $T_{\Sigma}: \mathbb{D}((E^{\sigma})^*) \to \mathcal{L}(\mathcal{H})$ is given by

$$\begin{split} & T_{\Sigma}(\eta) = D + C(I - L_{\eta^*}^*A)^{-1}L_{\eta^*}^*B \\ & \text{with } L_{\eta^*}: \mathcal{X} \to E^{\sigma} \otimes \mathcal{X}, \quad L_{\eta^*}x = \eta^* \otimes x. \end{split}$$

Moreover, T_{Σ} defines a contractive multiplier on $H^2(E, \sigma)$, and all contractive multiplier on $H^2(E, \sigma)$ are obtained in this way.

Take $A = \mathcal{L}(\mathcal{U})$, $E = \mathcal{L}(\mathcal{U}, \mathcal{U}^d)$, $\sigma(A) = A \otimes I_{\mathcal{K}} \in \mathcal{L}(\mathcal{U} \otimes \mathcal{K})$. Then a dissipative system matrix has the form

$$\begin{bmatrix} \begin{smallmatrix} A_1 \otimes I_{\mathcal{K}} & B_1 \otimes I_{\mathcal{K}} \\ \vdots & \vdots \\ A_d \otimes I_{\mathcal{K}} & B_d \otimes I_{\mathcal{K}} \\ C \otimes I_{\mathcal{K}} & D \otimes I_{\mathcal{K}} \end{bmatrix} \cong \begin{bmatrix} A_1 & B_1 \\ \vdots & \vdots \\ A_d & B_d \\ C & D \end{bmatrix} : \begin{bmatrix} \mathcal{X} \\ \mathcal{U} \end{bmatrix} \to \begin{bmatrix} \mathcal{X}^d \\ \mathcal{U} \end{bmatrix},$$

corresponding to a system

$$\Sigma := \left\{ \begin{array}{rcl} x(n+1) & = & \tilde{A}_n x(n) + \tilde{B}_n u(n), \\ y(n) & = & \tilde{C}_n x(n) + \tilde{D}_n u(n), \end{array} \right. \quad (n \in \mathbb{Z}_+)$$

with inputs, outputs and states $u(n), y(n) \in (\mathcal{U} \otimes \mathcal{K})^{(d^n)}, \ x(n) \in (\mathcal{X} \otimes \mathcal{K})^{(d^n)}$ and where

and where
$$\tilde{A}_n = \mathsf{blockdiag}_{i=1,\dots,d^n} \left(\left[egin{array}{c} A_1 \otimes I_{\mathcal{K}} \\ \vdots \\ A_d \otimes I_{\mathcal{K}} \end{array} \right] \right), \; \tilde{B}_n = \mathsf{blockdiag}_{i=1,\dots,d^n} \left(\left[egin{array}{c} B_1 \otimes I_{\mathcal{K}} \\ \vdots \\ B_d \otimes I_{\mathcal{K}} \end{array} \right] \right), \; \tilde{C}_n = \mathsf{blockdiag}_{i=1,\dots,d^n} \left(\left[C \otimes I_{\mathcal{K}} \right] \right), \; \tilde{D}_n = \mathsf{blockdiag}_{i=1,\dots,d^n} \left(\left[D \otimes I_{\mathcal{K}} \right] \right).$$

Take $\mathcal{A}=\mathcal{L}(\mathcal{U}),\ E=\mathcal{L}(\mathcal{U},\mathcal{U}^d),\ \sigma(A)=A\otimes I_{\mathcal{K}}\in\mathcal{L}(\mathcal{U}\otimes\mathcal{K}).$ Then a dissipative system matrix has the form

$$\begin{bmatrix} \begin{smallmatrix} A_1 \otimes I_{\mathcal{K}} & B_1 \otimes I_{\mathcal{K}} \\ \vdots & \vdots \\ A_d \otimes I_{\mathcal{K}} & B_d \otimes I_{\mathcal{K}} \\ C \otimes I_{\mathcal{K}} & D \otimes I_{\mathcal{K}} \end{bmatrix} \cong \begin{bmatrix} A_1 & B_1 \\ \vdots & \vdots \\ A_d & B_d \\ C & D \end{bmatrix} : \begin{bmatrix} \mathcal{X} \\ \mathcal{U} \end{bmatrix} \to \begin{bmatrix} \mathcal{X}^d \\ \mathcal{U} \end{bmatrix},$$

corresponding to a system

$$\Sigma := \left\{ egin{array}{lll} x(n+1) & = & ilde{A}_n x(n) + ilde{B}_n u(n), \ y(n) & = & ilde{C}_n x(n) + ilde{D}_n u(n), \end{array}
ight. \quad (n \in \mathbb{Z}_+)$$

with inputs, outputs and states $u(n), y(n) \in (\mathcal{U} \otimes \mathcal{K})^{(d^n)}, \ x(n) \in (\mathcal{X} \otimes \mathcal{K})^{(d^n)}$ and where

$$\begin{split} & \text{and where} \\ & \tilde{A}_n = \mathsf{blockdiag}_{i=1,\dots,d^n} \left(\left[\begin{smallmatrix} A_1 \otimes I_{\mathcal{K}} \\ \vdots \\ A_d \otimes I_{\mathcal{K}} \end{smallmatrix} \right] \right), \ \tilde{B}_n = \mathsf{blockdiag}_{i=1,\dots,d^n} \left(\left[\begin{smallmatrix} B_1 \otimes I_{\mathcal{K}} \\ \vdots \\ B_d \otimes I_{\mathcal{K}} \end{smallmatrix} \right] \right), \\ & \tilde{C}_n = \mathsf{blockdiag}_{i=1,\dots,d^n} \left(\left[C \otimes I_{\mathcal{K}} \right] \right), \ \tilde{D}_n = \mathsf{blockdiag}_{i=1,\dots,d^n} \left(\left[D \otimes I_{\mathcal{K}} \right] \right). \end{split}$$

Noncommutative *n*D systems

Identify

$$\mathcal{U}^{(n^d)} = igoplus_{lpha \in \mathcal{F}_d, \mathsf{length}(lpha) = n} \mathcal{U}$$

and untangle the equations.

Take $\mathcal{A}=\mathcal{L}(\mathcal{U}), \ E=\mathcal{L}(\mathcal{U},\mathcal{U}^d), \ \sigma(A)=A\otimes I_{\mathcal{K}}\in\mathcal{L}(\mathcal{U}\otimes\mathcal{K}).$ Then a dissipative system matrix has the form

$$\begin{bmatrix} \begin{smallmatrix} A_1 \otimes I_{\mathcal{K}} & B_1 \otimes I_{\mathcal{K}} \\ \vdots & \vdots \\ A_d \otimes I_{\mathcal{K}} & B_d \otimes I_{\mathcal{K}} \\ C \otimes I_{\mathcal{K}} & D \otimes I_{\mathcal{K}} \end{bmatrix} \cong \begin{bmatrix} A_1 & B_1 \\ \vdots & \vdots \\ A_d & B_d \\ C & D \end{bmatrix} : \begin{bmatrix} \mathcal{X} \\ \mathcal{U} \end{bmatrix} \to \begin{bmatrix} \mathcal{X}^d \\ \mathcal{U} \end{bmatrix},$$

corresponding to a system

$$\Sigma := \left\{ \begin{array}{rcl} x(n+1) & = & \tilde{A}_n x(n) + \tilde{B}_n u(n), \\ y(n) & = & \tilde{C}_n x(n) + \tilde{D}_n u(n), \end{array} \right. \quad (n \in \mathbb{Z}_+)$$

with inputs, outputs and states $u(n), y(n) \in (\mathcal{U} \otimes \mathcal{K})^{(d^n)}, \ x(n) \in (\mathcal{X} \otimes \mathcal{K})^{(d^n)}$ and where

$$\begin{split} & \text{and where} \\ & \tilde{A}_n = \mathsf{blockdiag}_{i=1,\dots,d^n} \left(\left[\begin{smallmatrix} A_1 \otimes I_{\mathcal{K}} \\ \vdots \\ A_d \otimes I_{\mathcal{K}} \end{smallmatrix} \right] \right), \ \tilde{B}_n = \mathsf{blockdiag}_{i=1,\dots,d^n} \left(\left[\begin{smallmatrix} B_1 \otimes I_{\mathcal{K}} \\ \vdots \\ B_d \otimes I_{\mathcal{K}} \end{smallmatrix} \right] \right), \\ & \tilde{C}_n = \mathsf{blockdiag}_{i=1,\dots,d^n} \left(\left[C \otimes I_{\mathcal{K}} \right] \right), \ \tilde{D}_n = \mathsf{blockdiag}_{i=1,\dots,d^n} \left(\left[D \otimes I_{\mathcal{K}} \right] \right). \end{split}$$

Commutative *n*D systems

Also symmetrize

$$u(\mathbf{n}) = \sum_{\alpha \in \mathcal{F}_{+}, \mathbf{a}(\alpha) = \mathbf{n}} u(\alpha) \quad (\mathbf{n} \in \mathbb{Z}_{+}^{d})$$

via the abelianization map

$$\mathbf{a}(\alpha) = (n_1, \dots, n_d)$$
 if letter i_k appears n_k times.

The Fock space $\mathcal{F}^2(E,\sigma)$ is equal to

$$\oplus_{n\in\mathbb{Z}_+}(\mathcal{U}\oplus\mathcal{K})^{(d^n)}=\oplus_{n\in\mathbb{Z}_+}\ell^2_{\mathcal{U}\oplus\mathcal{K}}\text{(words of length }n)=\ell^2_{\mathcal{U}\oplus\mathcal{K}}(\mathcal{F}_d).$$

The Fock space $\mathcal{F}^2(E,\sigma)$ is equal to

$$\oplus_{n\in\mathbb{Z}_+}(\mathcal{U}\oplus\mathcal{K})^{(d^n)}=\oplus_{n\in\mathbb{Z}_+}\ell^2_{\mathcal{U}\oplus\mathcal{K}}(\text{words of length }n)=\ell^2_{\mathcal{U}\oplus\mathcal{K}}(\mathcal{F}_d).$$

It follows that if x(0) = 0 and $u = (u(n))_{n \in \mathbb{Z}_+} \cong (u(\alpha))_{\alpha \in \mathcal{F}_d} \in \ell^2_{\mathcal{U} \otimes \mathcal{K}}(\mathcal{F}_d)$, then $y = (y(n))_{n \in \mathbb{Z}_+} \cong (y(\alpha))_{\alpha \in \mathcal{F}_d} \in \ell^2_{\mathcal{U} \otimes \mathcal{K}}(\mathcal{F}_d)$ and after the Z-transform $\hat{y}(\mathbf{T}) = T_{\Sigma}(\mathbf{T})\hat{u}(\mathbf{T})$,

where
$$\mathbf{T} = \left[egin{array}{ccc} \mathcal{T}_1 & \cdots & \mathcal{T}_d \end{array}
ight]$$
 is in

$$\mathbb{D}((\boldsymbol{E}^{\sigma})^*) \cong \{\boldsymbol{\mathsf{T}} = \left[\begin{array}{ccc} T_1 & \cdots & T_d \end{array} \right] : T_k \in \mathcal{L}(\mathcal{K}), \ \|\boldsymbol{\mathsf{T}}\| < 1\}.$$

Here the transfer function T_{Σ} and Z-transforms \hat{u} and \hat{y} are given by

$$\textbf{T}_{\Sigma}(\textbf{T}) = \textbf{D} \otimes \textbf{I}_{\mathcal{K}} + \textbf{C} \otimes \textbf{I}_{\mathcal{K}} (\textbf{I} - \sum_{k=1}^{d} \textbf{A}_{k} \otimes \textbf{T}_{k})^{-1} (\sum_{i=1}^{d} \textbf{A}_{i} \otimes \textbf{T}_{i}),$$

$$\hat{u}(\mathsf{T}) = \sum_{\alpha \in \mathcal{F}_d} (h_{\mathcal{U}} \otimes \mathsf{T}^{\alpha}) u(\alpha), \quad \hat{y}(\mathsf{T}) = \sum_{\alpha \in \mathcal{F}_d} (h_{\mathcal{U}} \otimes \mathsf{T}^{\alpha}) y(\alpha),$$

where $\mathbf{T}^{\alpha}=\mathit{T}_{\mathit{k_{n}}}\cdots\mathit{T}_{\mathit{k_{1}}}$ in case $\alpha=\mathit{e_{\mathit{k_{n}}}}\cdots\mathit{e_{\mathit{k_{1}}}}\in\mathcal{F}_{\mathit{d}}.$

The Fock space $\mathcal{F}^2(E,\sigma)$ is equal to

$$\oplus_{n\in\mathbb{Z}_+}(\mathcal{U}\oplus\mathcal{K})^{(d^n)}=\oplus_{n\in\mathbb{Z}_+}\ell^2_{\mathcal{U}\oplus\mathcal{K}}(\text{words of length }n)=\ell^2_{\mathcal{U}\oplus\mathcal{K}}(\mathcal{F}_d).$$

It follows that if x(0)=0 and $u=(u(n))_{n\in\mathbb{Z}_+}\cong (u(\alpha))_{\alpha\in\mathcal{F}_d}\in\ell^2_{\mathcal{U}\otimes\mathcal{K}}(\mathcal{F}_d)$, then $y=(y(n))_{n\in\mathbb{Z}_+}\cong (y(\alpha))_{\alpha\in\mathcal{F}_d}\in\ell^2_{\mathcal{U}\otimes\mathcal{K}}(\mathcal{F}_d)$ and after the Z-transform $\hat{y}(\mathbf{T})=T_{\Sigma}(\mathbf{T})\hat{u}(\mathbf{T}),$

where
$$\mathbf{T} = [T_1 \cdots T_d]$$
 is in

$$\mathbb{D}((E^\sigma)^*)\cong \{\textbf{T}=\left[\begin{array}{ccc}\textit{T}_1&\cdots&\textit{T}_d\end{array}\right]:\, \textit{T}_k\in\mathcal{L}(\mathcal{K}),\,\, \|\textbf{T}\|<1\}.$$

Here the transfer function \mathcal{T}_{Σ} and \mathcal{Z} -transforms \hat{u} and \hat{y} are given by

$$\textstyle T_{\Sigma}(T) = D \otimes I_{\mathcal{K}} + C \otimes I_{\mathcal{K}}(I - \sum_{k=1}^d A_k \otimes T_k)^{-1} (\sum_{i=1}^d A_i \otimes T_i),$$

$$\hat{u}(\mathsf{T}) = \sum_{\alpha \in \mathcal{F}_d} (l_{\mathcal{U}} \otimes \mathsf{T}^{\alpha}) u(\alpha), \quad \hat{y}(\mathsf{T}) = \sum_{\alpha \in \mathcal{F}_d} (l_{\mathcal{U}} \otimes \mathsf{T}^{\alpha}) y(\alpha),$$

where $\mathbf{T}^{\alpha} = T_{k_n} \cdots T_{k_1}$ in case $\alpha = e_{k_n} \cdots e_{k_1} \in \mathcal{F}_d$.

Noncommutative *n*D systems ($\mathcal{K} = \ell^2(\mathbb{Z})$):

Identify $T_1, \ldots, T_d \in \mathcal{L}(\ell^2(\mathbb{Z}))$ with noncommutative indeterminates.

The Fock space $\mathcal{F}^2(E,\sigma)$ is equal to

$$\oplus_{n\in\mathbb{Z}_+}(\mathcal{U}\oplus\mathcal{K})^{(d^n)}=\oplus_{n\in\mathbb{Z}_+}\ell^2_{\mathcal{U}\oplus\mathcal{K}}(\text{words of length }n)=\ell^2_{\mathcal{U}\oplus\mathcal{K}}(\mathcal{F}_d).$$

It follows that if x(0) = 0 and $u = (u(n))_{n \in \mathbb{Z}_+} \cong (u(\alpha))_{\alpha \in \mathcal{F}_d} \in \ell^2_{\mathcal{U} \otimes \mathcal{K}}(\mathcal{F}_d)$, then $y = (y(n))_{n \in \mathbb{Z}_+} \cong (y(\alpha))_{\alpha \in \mathcal{F}_d} \in \ell^2_{\mathcal{U} \otimes \mathcal{K}}(\mathcal{F}_d)$ and after the Z-transform

$$\hat{y}(\mathbf{T}) = T_{\Sigma}(\mathbf{T})\hat{u}(\mathbf{T}),$$

where $\mathbf{T} = [\begin{array}{ccc} T_1 & \cdots & T_d \end{array}]$ is in

$$\mathbb{D}((E^{\sigma})^*) \cong \{\mathbf{T} = [T_1 \cdots T_d] : T_k \in \mathcal{L}(\mathcal{K}), \|\mathbf{T}\| < 1 \}.$$

Here the transfer function \mathcal{T}_{Σ} and $\mathcal{Z}\text{-transforms }\hat{u}$ and \hat{y} are given by

$$T_{\Sigma}(\mathbf{T}) = D \otimes I_{\mathcal{K}} + C \otimes I_{\mathcal{K}}(I - \sum_{k=1}^{d} A_{k} \otimes T_{k})^{-1}(\sum_{i=1}^{d} A_{i} \otimes T_{i}),$$

$$\hat{u}(\mathsf{T}) = \sum_{\alpha \in \mathcal{F}_d} (I_{\mathcal{U}} \otimes \mathsf{T}^{\alpha}) u(\alpha), \quad \hat{y}(\mathsf{T}) = \sum_{\alpha \in \mathcal{F}_d} (I_{\mathcal{U}} \otimes \mathsf{T}^{\alpha}) y(\alpha),$$

where $\mathbf{T}^{\alpha} = T_{k_n} \cdots T_{k_1}$ in case $\alpha = e_{k_n} \cdots e_{k_1} \in \mathcal{F}_d$.

Commutative *n*D systems ($\mathcal{K} = \mathbb{C}$):

Because the entries in $\mathbf{T}=(z_1,\ldots,z_d)\in\mathbb{D}((E^\sigma)^*)\subset\mathbb{C}^d$ commute

$$\hat{u}(z_1,\ldots,z_d) = \sum_{\mathbf{n}\in\mathbb{Z}_d^d} z^{\mathbf{n}} u(\mathbf{n})$$

with $u(\mathbf{n})$ defined via symmetrization.

THANKS FOR YOUR ATTENTION